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Abstract 

A physical characterisation of classical systems in quantum mechanics is given in terms of 
the set of ensembles in contrast to the well-known characterisations concerning the effects 
ot observables: A quantum mechanical system is classical if and ovly if each two decompo- 
sitions of every ensemble are compatible. 

1. Introduction 

The investigation of classical systems in the frame of  axiomatic quantum 
mechanics is of  considerable relevance for several reasons. 

A physical characterisation of classical systems always gives some information 
about what purely quantum mechanical systems are not. 

On the other hand the connection between observables and the description 
of classical systems allows us to carry over results valid for classical systems to 
regions of  quantum mechanical systems (Neumann, 1971). 

Throughout this paper it is assumed that a quantum mechanical system is 
described by a separable base normed Banach space B and its dual B' (Davies & 
Lewis, 1970; Ludwig, 1972). B '  is an order unit space. The base K of the 
closed positive cone of B represents the set of  ensembles and the order interval 
L -- { r E  B' ]0  < f < 1 } represents the set of effects (yes-no experiments), 1 
be ing  the order unit in B'.  The probability of  measuring an effect f E L in the 
ensemble v E K is given by the value of the functional f on v or in an equivalent 
formulation by the value of the canonical bilinear form/a on B x B'. 

In addition to this assumption we suppose that the axioms 4a, 4bz, 5 of  
Ludwig (1972)are sat isf ied though no expficit use is made of them in Section 2. 
Axiom 4a implies that for all v E K the sets {v} ± n L = { f  EL/I~(v, f )  = 0} 
contain greatest, i.e. most sensitive effects which are called decision effects. 
The set  G of decision effects is a complete orthocomplemented orthomodular 
latt ice  with respect to the ordering on G induced by the ordering of B'. 
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A quantum mechanical system is called classical if the set G of decision 
effects is coexistent (Neumann, t971). This is exactly the case if the lattice G 
is Boolean. A quantum mechanical system is classical if and only i fB is a 
separable L-space and thus B is norm and order isomorphic to a space 
L I ( S ,  Z , m )  where (S, ~.,m) is a finite measure space. G is o-isomorphic to 
Z / J m ,  Jm denoting the ideal of  sets of  m-measure zero. 

2. The  Theorem 

In order to motivate the definition of  compatibility of decompositions of 
ensembles consider an ensemble v E K of  a quantum mechanical system. In 
general there are many preparing procedures which can be described by the 
ensemble v. A def'mite preparing procedure p consists of  a set of  preparing 
parts which satisfy the macroscopic criteria given by the preparing procedure p 
and with each of which a single experiment is performed.% (A repetition of an 
experiment def'mes a new preparing part.) 

It can occur that there are macroscopic criteria which allow the division of 
the set p of  preparing parts into classes ai C p ,  i = 1 . . . . .  n,  which are again 
preparing procedures. In this case the ensemble v describing p is a mixture 
o = ~n= 1 2kaiVai (~ai ~ 0, ~n= 1 = l) of ensembles Vai describing the procedures 
ai. It is reasonable to assume that the class of  subprocedures of  a given pre- 
paring procedure p is a Boolean algebra A of subsets o f p  and according to the 
physical interpretation of a mixture the mapping ×: A --, U ~,K defined 

O ~ k ~ l  

by a "~ ~av a is a vector valued measure on A. (If  a, b E A with a N b = ~ then 
~aU bVa Ub = ~kaVa ~r ~bVb). 

Two decompositions 
n n ~ 

v = 7 x ,v ,=  7 x'v  
i = 1  i = 1  

of an ensemble v shall be called compatible if  one can consider both decom- 
positions generated by a division into classes of a common preparing procedure 
p ofv. 

Defini t ion.  Two decompositions 

n n' 
v Y X~i=  Y ' '  = ~ iV i  

1=1 i = l  

wi th  v, vi, v~ E K, 7~ i, ~ >I 0 are called compatible if there is a Boolean algebra 
A and a mapping X: A ~ U XK such that × is a vector-valued measure on 

0 < h < l  

A ,  X ( I )  = v and 
~t I . t 

{Xiv  1, Xkvk/ i  = 1 . . . . .  n, k = I . . . . .  n } C x ( A )  

The notion of compatible decompositions of  ensembles is of great importance 

t Concerning the notions of preparing parts and preparing procedures in the axiomatic 
foundation of quantum mechanics, see Ludwig (1974)and Hartk/imper (1974). 
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in the investigation of  the preparing and measuring process. The incompatibility 
of  decompositions of  ensembles reflects the difficulty of  assigning 'real '  prop- 
ositions to single quantum mechanica! particles. Incompatible decompositions 
of  an ensemble are considered for instance in the Einstein-Rosen-Podolski 
paradox. A simple example of  incompatible decompositions are the decompo- 
sitions 14' = ½/~x + ½Px = ½/~y + ½Py in the two-dimensional spin-Hilbert space, 
Px + being the projection operator onto the +½-spin state in the x-direction and 
Px, P~,, P~, being analogously defined. 

On the other hand W = ,~Px + + ~Px + 141 = ~/~y + ¼Py + 141 are compatible 
decompositions of  this ensemble. 

Theorem. A quantum mechanical system described by B, B' is classical if 
and only if each two decompositions of  every ensemble are compatible. 

Proof. I f  each two decompositions of  every v E K are compatible B has the 
Riesz decomposition property.  In order to prove this consider x t, x2 E B with 
x l , x  2 >10. I f  [0 ,xi]  = {xEB/O<<.x<-Nx~) we have to verify [ 0 , x l ]  + [0,x2] = 
[0, x l  + x2 ]. Consider z E [0, x i + x2] ,  z :/: 0. We may assume 11 x t + x2[t = 1, 
hence v = x I + x2 E K. v = x t + x2 and v = (v - z) + z are compatible decompo- 
sitions o f  v. There is a Boolean algebra A and a vector-valued measure X: 
A - ~  U ) , K s u c h t h a t x ( l ) = v , x ( q i ) = x i ,  i = 1,2, and x(q3) = v - z, 

0 < h < l  
x(q4)  = z. Let O, n and * denote the Boolean operations union, intersection 
and complement in A. Since q4 = (q4 N q l )  U (q4 N q~)  we have 

z = x ( q 4  n q l )  + x(q4 N q ~ )  

and 

x(q4 n q l ) < x ( q ~ ) = x ~  

x(q4 n qD < x (qD ='. - x l = x2 

Thus the Riesz decomposition property holds. It is well known that a base 
normed Banach space with a closed cone having the Riesz decomposition 
property is an L-space (compare, e.g., Ellis, 1964). B'  is a vector lattice and 
the lattice G of  decision effects is a sublattice and hence Boolean. 

To prove the inverse implication assume B, B '  to describe a classical 
system. It is sufficient to show that for all v E K there is a Boolean algebra A 
and a vector-valued measure X: Au -~ U XK such that X(1) = v and 

O ~ k ~ l  
M~ = (x  ~ 8/O < x < v} C x(AO.  

First o f  all we shall introduce a product on Mu. According to the statement 
quoted in the introduction we may assume B = L l(S, Z, m)  for a finite 
measure space (S, ~,, m). I f x  E B  let mx denote the finite measure on S 
associated with x. For all x EMv there is an m: integrable  function fx on S 
such that rex(O) = fo fx(s) dm~(s) for all o E Y.. Moreover 0 ~ fx(s) < 1 a.e. 
on S. I f x  1, x2 ~ Mu we have 0 < fx I (s). fx2 (s) < 1 and fxl .fx~ is an r n :  
integrable function.Thus there h x 3  EMv such thatfx~ = fx,  .Ix,  and we 
have introduced a product on My. The relations x I • x2 = x2 .  x l, x l -  v = x l 
hold for all x t ,  x2 EMv.  Moreover x (x I + x 2) = x .  x t + x .  x2 i fx ,  x l ,  x2, 
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x I + xz E Mu. Notice, however, that the definition of  the product strongly 
depends on the fixed v E K. 

Let RMo be the free Boolean algebra generated by the set Mr. If Tdenotes 
the set consisting of two elements, T = (0, 1 }, RMv can be considered as the 
Boolean algebra of  subsets of  T Mo generated by the sets Px-1 (1), where T My 
is the set of  all mappings Mr ~ T and Px is the canonical projection Px: 
T Mo~ T for x EMo. Then every element Of RMo is a disjoint union of 
'monomials" 

~r 
a = n pxi-l(5-~, ~i E T. A vector-valued measure is defined on RMu if it is 

i=1  
defined on these monomials. We put A u = RMo and define 

n [ xi if5 i = I 
x(a) = / 1  = 

i=l [ v - x  i if~ i = 0  

where II denotes the product introduced in Mr. 
Since X(a) = x(a).(v - x)  + ×(a).x  fora  E RMv,X EMu, × is a vector- 

valued measure on RMo such that X(RMu) = My (compare also the proof of  
Theorem 8 (Neumann, 1971)). This completes the proof of  the theorem. 
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